Nonstationary latent Dirichlet allocation for speech recognition

نویسندگان

  • Chuang-Hua Chueh
  • Jen-Tzung Chien
چکیده

Latent Dirichlet allocation (LDA) has been successful for document modeling. LDA extracts the latent topics across documents. Words in a document are generated by the same topic distribution. However, in real-world documents, the usage of words in different paragraphs is varied and accompanied with different writing styles. This study extends the LDA and copes with the variations of topic information within a document. We build the nonstationary LDA (NLDA) by incorporating a Markov chain which is used to detect the stylistic segments in a document. Each segment corresponds to a particular style in composition of a document. This NLDA can exploit the topic information between documents as well as the word variations within a document. We accordingly establish a Viterbi-based variational Bayesian procedure. A language model adaptation scheme using NLDA is developed for speech recognition. Experimental results show improvement of NLDA over LDA in terms of perplexity and word error rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

以狄式分佈為基礎之多語聲學模型拆分及合併 (Multilingual Acoustic Model Splitting and Merging by Latent Dirichlet Allocation) [In Chinese]

To avoid the confusion of phonetic acoustic models between different languages is one of the most challenges in multilingual speech recognition. We proposed the method based on Latent Dirichlet Allocation to avoid the confusion of phonetic acoustic models between different languages. We split phonetic acoustic models based on tri-phone. And merging the group that selected by Latent Dirichlet Al...

متن کامل

Confidence measure for speech indexing based on Latent Dirichlet Allocation

This paper presents a confidence measure for speech indexing that aims to predict the indexing quality of a speech document for a Spoken Document Retrieval (SDR) task. We first introduce how the indexing quality of a speech document is evaluated. Then, we present our method to predict the indexing quality of a speech document. It is based on confidence measure provided by an automatic speech re...

متن کامل

Interpolated Dirichlet Class Language Model for Speech Recognition Incorporating Long-distance N-grams

We propose a language modeling (LM) approach incorporating interpolated distanced n-grams in a Dirichlet class language model (DCLM) (Chien and Chueh, 2011) for speech recognition. The DCLM relaxes the bag-of-words assumption and documents topic extraction of latent Dirichlet allocation (LDA). The latent variable of DCLM reflects the class information of an n-gram event rather than the topic in...

متن کامل

Unsupervised domain discovery using latent dirichlet allocation for acoustic modelling in speech recognition

•New applications and domains are becoming the target of research in automatic speech recognition •New domains can be “found data”, such as media and historical audio archives •Domain for some recording is hard to assess, e.g. YouTube recordings • Loss of accuracy would be large due to wrong modelling decision • Expressing data as a mixture of domains can be a beŠer solution •Aims of this study...

متن کامل

Recurrent neural network language model adaptation for multi-genre broadcast speech recognition

Recurrent neural network language models (RNNLMs) have recently become increasingly popular for many applications including speech recognition. In previous research RNNLMs have normally been trained on well-matched in-domain data. The adaptation of RNNLMs remains an open research area to be explored. In this paper, genre and topic based RNNLM adaptation techniques are investigated for a multi-g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009